
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 3, 137-163 (1983) 

A FINITE ELEMENT METHOD FOR HIGH REYNOLDS 
NUMBER VISCOUS FLUID FLOW USING 

TWO STEP EXPLICIT SCHEME 

MUTSUTO KAWAHARA 

Department of Civil Engineering, Chuo University Kasuga, Bunkyo-ku, Tokyo, 1 12, Japan 

AND 

HIROKAZLJ HIRANO 

Mitsui Engineering and Shipbuilding Co., Ltd. Tsukiji, Chuo-ku, Tokyo, 104, Japan 

SUMMARY 

This paper presents the finite element method for the analysis of unsteady viscous flow of fluid at high 
Reynolds numbers. The method is based on the explicit numerical integration scheme in time and uses 
three node triangular finite elements. For the convenience of the formulation, slight compressibility is 
considered. For the explicit scheme, the selective lumping two step scheme has been successfully 
employed. Vortex shedding behind a cylinder has been computed and compared with the conventional 
experimental results. The results agree favourably when both schemes are compared. 
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1. INTRODUCTION 

Recent developments of the finite element method have demonstrated that it is one of the 
most successful numerical methods for the analysis of incompressible viscous flow. The 
method is particularly adaptable for the analysis of both steady and unsteady flow. The main 
objective of the current work is to overcome the difficulty that the fluid is incompressible. 
One of the promising methods, referred to as the penalty function method, has been 
investigated by a number of researchers. 

Relatively high Reynolds number flow has been solved by the penalty function method. 
Hughes et a1.’,2 have presented the steady flow analysis based on rectangular finite elements 
and on a reduced integration scheme. Heinrich et aL3 have discussed the formulation on the 
quadratic interpolation equation. Mathematical aspects of reduced integration have been 
dealt with R e d d ~ ~ . ~  and Odem6 Temam7,8 has presented the mathematical convergence of 
the penalty function method for unsteady flow but without numerical illustration. Lee et 
al.9.i0 and Gresho et al.” have investigated the steady and unsteady penalty function 
method. They presented numerical results for a Reynolds number of 1.0 x lo5. Because their 
formulation is based on the implicit type of numerical integration in time, the refinement of 
the finite element idealization seems rather insufficient. 

The basic idea of the penalty function method can be found in the classical finite difference 
analysis, for instance, References 12-14. The ideas in those papers are closely related to 
those of artificial compressibility. The fluid existing in the natural world is not strictly 
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incompressible, i.e. observations always show that the propagating speed of sound through 
the fluid has a finite value. It could be stated that the conventional analysis can be performed 
for the idealized material which in fact, could not exist in the natural world. 

This paper presents the finite element analysis for fluid flow including compressibility, i.e. 
a finite value of the speed of sound. The improved equation of continuity is derived from 
equations of both state and conservation of mass. If the speed of sound in the improved 
equation tends to infinity, the equation becomes coincident with the conventional equation 
of continuity. This is also the physical interpretation of the penalty function method. 

In the conventional finite element method, the implicit type of numerical integration 
scheme in time is usually used. One of the reasons for this is that the equation of continuity 
for incompressible flow is independent of the tirnewise derivative of pressure. It is, then, 
practically impossible to apply the explicit type of numerical integration scheme. However, 
the diagonal terms of the coefficient matrix to be solved in the implicit scheme include some 
zero values, which drastically reduces the conditioning of the simultaneous equation system. 
In particular, the zero value in the diagonal terms reduce the stability of solution of the 
simultaneous equations. 

The time increment in the implicit scheme can be taken longer than that of the explicit 
scheme. The computation of the implicit scheme may be more stable than that of the explicit 
scheme. Regardless of these facts, this paper concentrates on presenting the finite element 
method based on the explicit numerical integration scheme in time. The reason is as follows. 
It is necessary to use extremely refined finite element idealization to compute the flow at 
high Reynolds numbers. To solve the simultaneous equations, a large size of computer core 
storage is required. But, even if the largest scale computer could be available, the core 
storage capacity would still be great. Contrary to this, if the explicit method is used, the 
computer core storage can be drastically reduced. This is because only the core storage for 
the coefficient data of each finite element is required in the explicit computation. The explicit 
integration can be carried out by the simple operations of multiplication in an element-wise 
manner. To pursue the complicated phenomena at high Reynolds number, e.g. vortex 
shedding behind an obstacle, a substantially short time increment should be essential. In this 
sense, the explicit scheme is more useful. Total computational time is also saved even if the 
time increment is limited by the travelling time of sound through the minimum length of 
each finite element. 

The numerical test examples have been performed for the comparison with the analytical 
solutions and the numerical solution obtained by Lee et aL9 Generally, both numerical and 
analytical results are in close agreement. These examples have illustrated that the present 
method is adaptable for the computation of incompressible fluid flow. For the practical 
applications, vortex shedding behind a cylinder has been analysed using the present method. 
The computed velocity shows the behaviour of vortex production and separation quite 
clearly. The Strouhal number is compared with the experimental result. Both results are in 
agreement. The pressure coefficient around the cylinder is compared with experimental 
values. In an average sense, both results are reasonably coincident. From the numerical 
experiments described in this paper, it is concluded that the present finite element method is 
one of the most practically suitable methods for the analysis of the fluid flow at high 
Reynolds numbers. 

2. BASIC EQUATIONS 
The aim of this paper is to present the finite element method to solve a two dimensional 
transient flow of an incompressible viscous fluid. Extensions to the analysis of a three 
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dimensional flow or thermally conductive flow are simple and straightforward. In the process 
of the analysis, the compressibility of the fluid is considered. The basic equations employed 
are summarized in this section. 

Indicia1 notation and the usual summation convention with repeated indices are introduced 
to describe the equations. The spatial rectangular co-ordinate system xi ( i  = 1,2) is used. 
Notations ( ),i and (.) mean partial differentiation with respect to co-ordinate, xi, and time, t ,  
respectively. The Kronecker delta function is expressed by Sij .  

Introducing density of fluid p and velocity ui, the conservation law of mass can be 
expressed as follows. 

%+ (pu,),, = 0 
at 

Using the conservation law of linear momentum, the equation of motion is derived as: 

p e +  UiUi.J + p,i - 7 i j , j  + pfi = 0 

where p, T ~ ~ ,  fi denote pressure, viscous stress and body force, respectively. The viscous stress 
is assumed to be written as a function of velocity gradient as: 

7ij Kd&j 2pdij (3) 

where K and p represent volumetric and shear viscous coefficients, respectively, and the 
deformation rate dii is described as: 

d.. IJ =1(u. 2 1.1 . + u. 1.1 .) (4) 
Since the pressure is a function of density the equation of state can be expressed in the 

following form. 

Using this, the speed of sound, c, is defined as: 

P = P ( P )  ( 5 )  

The speed of sound can be taken as a constant since the incompressible flow is being 
considered. 

Regarding boundary conditions, the following four types of conditions will be considered. 
The velocity is assumed to be prescribed on boundary S1, i.e. 

u, = ii,, on S, (7) 
where superposed * means the prescribed function on the boundary. The surface force is 
supposed to be given on boundary Sz, i.e. 

s, = (-p S,, + ~ , , ) q  = d,, on S2 (8) 

t, = 7,J11J = f,, on S3 (9) 

p = f i ,  on S4 (10) 

where n, is a unit normals to the boundary. The surface flux condition will be denoted by; 

The pressure is enforced on boundary S, as 
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Finally, the discharge is written on boundary S5 as follows, 

q = u,n, = 4, on S, (11) 

This paper deals with two cases, denoted analysis I and analysis 11. In analysis I, the 
velocity condition is considered as the essential boundary condition and the surface force is 
as the natural boundary condition. For this purpose, the following assumption is introduced 

s1 u s, = s 
s , n s 2 = ~  

where S denotes whole boundary and 0 is a null set. Equation (12) means that the whole 
boundary consists of two boundaries only, on which velocity and surface force are pre- 
scribed, and these boundaries are not overlapped. 

In analysis 11, the velocity and pressure conditions are taken as the essential boundary 
conditions and the surface flux and discharge are as the natural boundary conditions. For this 
purpose, the following assumptions are used. 

s, u s, = s 
s,ns,=m 
s,usg=s 
s4ns,= 0 

Equation (13) means that the whole boundary consists of two boundaries only, on which 
velocity and surface flux are prescribed, and these boundaries are not overlapped. Equation 
(14) also means that the whole boundary consists of two boundaries only, on which pressure 
and discharge are prescribed, and these boundaries are not overlapped. 

The essential difference between analyses I and I1 is centered on the description of 
pressure. In analysis I, the pressure is described as the natural boundary condition, whereas 
the pressure is itself given as the essential boundary condition in analysis 11. 

3. TRANSFORMATION OF THE BASIC EQUATIONS 

Equations (1)-(4) are referred to as the basic equations in this paper. These equations can be 
transformed into more suitable forms for the explicit finite element method. Since the 
compressibility is nearly insignificant, the density of fluid p can be taken as a constant with 
respect to co-ordinate xi and time t in a part of the transformation process. Non-dimensional 
forms can also be derived. 

Differentiating both sides of equation (5) ,  the equation of state is reformulated as follows. 

where D/Dt means the material derivatives with respect to time, t .  Using equations (1) and 
(6), the following equation is derived from equation (15). 

%+ uip,i + pc2ui,i = 0 
at  

If the speed of sound tends to infinity, equation (16) becomes the well known equation of 
continuity. 

u..  1.1 = o  (17) 
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Almost all of the previously published finite element methods have employed equation (17) 
as the equation of continuity. Contrary to this, it is inconvenient to formulate the explicit 
finite element method using equation (17). Therefore, in this paper equation (16) is used as 
the equation of continuity since the explicit finite element method can be formulated quite 
readily based on this equation. 

Introducing equations (3)  and (4) into equation (2) and rearranging the terms, the 
following equation of motion is derived. 

in which the volumetric viscous coefficient K is introduced since the equation includes 
compressibility. However, since the method aims to solve the incompressible flow, the 
volumetric coefficient K will be set to zero. 

Taking the reference length L and velocity U, the non-dimensional time and co-ordinate 
are introduced as: 

Using equations (19) and (20), the non-dimensional form of the equation of momentum is 
derived as follows. 

(21) - v(vi,i +Vj,i),j + F ,  = 0 
where 

Using equations (19) and (20), the non-dimensional form of the equation of continuity is 
obtained as follows. 

a p  - + v i q i  + cqi = 0 
at 

The finite element analysis in this paper will be formulated based on equations (21) and (22). 
Boundary conditions for analysis I are 

v. I = v. 1 )  on S1 
si = (-Cpsij + tij)nj = $, on s2 

where 
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In an almost similar manner, boundary conditions for analysis TI are written as follows. 

v. I = '0. 2 )  on S, 
Ti = t ip i  = Ti, on S3 

P = P, on S4 
Q = C V , ~ ,  = 6, on  s5 

where 

4. WEIGHTED RESIDUAL EQUATIONS 

As the first step of the finite element method, it is necessary to introduce the weighted 
residual equations. Let v: be the weighting function for velocity, the value of which is 
arbitrary except on boundary S1, where it takes a value of zero. Multiplying both sides of 
equation (21) by v$ and integrating over the volume V, the following equation is derived. 

Jv (v*$)dV+ J, ( v f ~ ~ v , , ~ ) d V + ~ ~  (vfCP,,)dV 

c 

+jv (vrf,) dV=O 

Let P" be the weighting function for pressure, the value of which is arbitrary except on 
boundary S3, where it takes a value of zero. Multiplying both sides of equation (22) by P*, 
and integrating over the volume V, the following equation is obtained. 

jv (P* $) d V +  1, (P*v,P,,) d V +  (P*Cv,,,) dV=O (27) 

In analysis I, the weighted residual equation is derived using integration by parts on equation 
(26). 

= L, (v?$) dS  (28) 

In the derivation of equation (28), equations (12) and (23) are used. Equation (28) includes 
the surface force boundary condition on S2 as the natural boundary condition. In analysis I, 
equations (27) and (28) with the essential boundary condition for velocity are used as the 
weighted residual equation. 
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In analysis 11, the weighted residual equation is obtained using integration by parts on 
equation (26). 

jv (u? 2) d V+ jv ( v ? v ~ ~ , ~ )  d V +  C ( vTP ,~)  d V  I, 

In the derivation of equation (29), equations (13) and (24) are used. Equation (29) includes 
the surface flux boundary condition on S3 as the natural boundary condition. Integration by 
parts of equation (27) leads to the following equation. 

In the derivation of equation (30), equations (14) and (25) are employed. Equation (30) 
includes the surface flux boundary condition on S, as the natural boundary condition. In 
analysis 11, equations (29) and (30) with the essential boundary condition for velocity and 
pressure are used for the weighted residual equation. 

5.  FINITE ELEMENT ANALYSIS 

It is supposed that the flow field to be analysed is divided into a large number of small 
domains called finite elements. Both trial and weighting functions are assumed in the 
following manner. For velocity, the interpolation equation is: 

where @a is the interpolation function, umi represents the nodal value of velocity at the a t h  
node of the finite element in the ith direction and uzi  is the nodal value of the corresponding 
weighting function, respectively. For pressure, the interpolation equation is: 

P = @,Pol 

P" = @,,PZ 

(33) 

(34) 

where Pol denotes the nodal value of pressure at a t h  node of the finite element and Pz is the 
nodal value of the corresponding weighting function, respectively. The interpolation function 
is essentially related to the stability of a numerical integration scheme in time. Taking the 
fact into account that the present method employs the two step explicit scheme for the 
numerical integration in time, the linear interpolation function based on three node triangu- 
lar finite element is used for both velocity and pressure. 

Substituting equations (31)-(34) into equations (27) and (28), considering the arbitrariness 
of u:i and P: and rearranging the terms, the finite element equation for analysis I can be 
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derived as follows. 

where 

Introducing equations (31)-(34) into equations (29) and (3O), considering the arbitrariness 
of ozi and P z  and rearranging the terms, the finite element equation for analysis I1 can be 
derived in the same forms of equations (35) and (36), where 

e,= (@,Q)dS 6, 
Henceforth, equations (35) and (36) are regarded as the finite element equations for both 
analysis I and analysis 11. The finite element equation for the whole flow field is also derived 
in the same form as in equations (35) and (36). 

For the numerical integration in time, the selective lumping two step explicit method is 
effectively used. The method has already been investigated by Kawahara et ul.15-23 The 
numerical integration procedure consists of two steps and can be applied to equations (35) 
and (36) as follows. 
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For the first step: 

145 

and for the second step: 

in which e is referred to as the selective lumping parameter. The parameter e controls the 
numerical damping and the numerical stability, which has been throughly investigated by 
Kawahara et al.22,23 

6. STABILITY CONSIDERATION 

To establish the practically useful rule for the computational stability, Neumann condition is 
investigated for one dimensional linearized equation. Consider the following equation: 

a u  a u  aP a 2 U  -+u-+c--v~=0 
at  ax ax ax 

ap aP a u  
at ax ax 
-+ u-+ c-= 0 (43) 

where u and P represent velocity and pressure and U, C, v are reference velocity, sound 
speed, viscosity, respectively, and the latter three are assumed constant. For the ith nodal 
point of the equivalent mesh idealization and nth time point, the finite element equation is 
written as follows: 

For the first step: 

EL 
2 

u;+f = up- u- [(-$)u;--, +($)u;+-,] 
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and for the second step: 

u;+l= ur-  UP[(-$)u"+t+($)un+k 1 

in which Ax and At represent the distance between nodal points and the time increment, 
respectively. Assume that the solutions of equations (44)-(47) can be expressed as: 

(48) 

(49) 

; = R n eiwi 

p;  = Qneiwi 

where j = J-1. Introducing equations (48) and (49) into equations (44)-(47) and rearranging 
the terms, the following amplification relations can be derived. 

where a = 2 + 1  3 3cosw 

b = p sin w 

For the eigenvalue A of equation (SO), the following equation can be obtained. 

From equation (51), four eigenvalues can be derived as: 

A l  = O  (52) 
A2 = -jb( U +  C )  (53) 

(54) 

(55 )  

Ub . a - e + 1 +J(-C2b2+ a'-2a + 2ae + e2-2e + 1) 
2 

Ub . a - e + 1,/(-C2 b2 + a2 - 2a + 2ae + e2 - 2e + 1) 
2 

A , = - T J +  

A q =  --p+ 
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The criterion for the selection of the time increment At is obtained from equation (53) in the 
following form. 

A x  
A t S -  

U + C  

From equations (54) and (55 ) ,  a similar criterion must be obtained. However, the criteria 
seem rather cumbersome and useless for practical computations. There is a possibility that 
some time increment, At, arbitrarily chosen could be tested to satisfy the criteria. 

Aside from these, the authors' numerical experiences show that the equation: 

A x  
A t S a -  u+c (57) 

is extremely useful for the practical computation. Usually, the constant a is chosen with in 
the range of 0.1 - 0.3. It is interesting that a is almost independent of viscosity. 

7. TEST EXAMPLES 

The first example concerns the propagation of a sound wave, i.e. the difference of pressure. 
This example is the test for the adaptability of the present finite element method in analysis 
I, especially for the choice of the selective lumping parameter. The problem will be restricted 
to one dimension as: 

av av ap 
a~ ax ax 
-+TI--+C-=o 

a~ a p  av  
aT ax ax 
-+v-+c-=o (59) 

where v, P denote velocity and pressure and C is speed of sound respectively. The speed of 
sound is assumed a constant. Figure 1 shows the finite element idealization used in the 
computation. The problem is completely one dimensional. However, a two dimensional 
method of solution has been used in order to test the present finite element method and for 
the boundary condition, normal velocity on all boundaries A-B-C-D is assumed zero. For 
the initial condition, the pressure difference between two regions separated at the centre is 
enforced as PI = 11 and P3 = 10. 
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! C- 
f - - - - - - - - - -  

Figure 2. 

From equations (58) and (59), the following conservation equation can be derived. 

[ ~ + ( .  + C )  - (u + P )  = 0 
ax 7 

[ -& + (u - C )  - (u - P )  = 0 
ax 7 

Therefore, ( v  + P )  and (u -P)  are conserved. At the wave front, the following equations are 
valid. 

“Pun = 0 (62) 

where p is density and 11 denotes the difference at the wave front. Using the above 
relations, the propagation of the sound wave can be expressed schematically as in Figure 2. 
The propagation speed is C and pressure at the intermediate region Pz is derived as follows. 

Pz = &PI + PZ) (64) 
Figure 3 illustrates the computed wave propagation of pressure using the selective lumping 
parameter e = 0.7 and sound speed C = 1000. The initial condition is denoted by the broken 
line. Solid circles are for computed pressure. The propagation of a wave and the reflection of 
a wave have been clearly shown. The results are in close agreement with the analytical 
solution. 

The comparison of the reflected wave with the various selective lumping parameters is 
represented in Figure 4. In the case where e = 0, there seems a slight damping effect. In the 
case where e = 0.95, the computed pressure seems to  include computational instability. From 
Figures 3 and 4, it is concluded that the wave propagation can be computed exactly using the 
proper choice of the selective lumping parameter. If the choice of the parameter is not 
suitable, the instability of the computation or the superfluous numerical damping will arise. 

The second example is the computation of pressure and velocity responding to the 
sinusoidal variation of the pressure at the boundary. The computation has been carried out 
by the formulation in the analysis 11. The computed results have been obtained by using the 
two dimensional computer program and including the non-linear terms. An analytical 
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Figure 3.  

solution is obtained for the linear problem: 

au aP -+c-=o 
at  ax 

aP au -+c-=o 
a t  ax 

P = a s i n o t ,  at x = x o + L  

at x =xo aP -=o, 
ax 
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" 

Figure 4. 
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Figure 5 .  
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The velocity and pressure can be obtained as follows. 

a 
cos {% (~-3)} sin ot 

C L L  
P =  

cos g) 
cos g) V =  a sin ("c" - (; __-  x;)] cos wt  

Figure 5 shows the finite element idealization and the computed results. For boundary 

E 

obtained by 2.L.Lae etc 

- obtained by !he present method 

_ - _ _ _ _  

E F 
C=lOOO 

603 

; Lo3 
% 
g 200 

m 

C 

0 

200 

]c - - - - - - -x  by R.L,Leeetc. 

o-----o by !he present method 

I 

X -- 

Figure 6 .  
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conditions of velocity, the normal velocities to all boundaries are assumed zero. At the 
boundary C-D, the pressure is assumed to be 

P = 6.0 sin (& t) 
The speed of sound C = 1000 is used. The computed velocity and pressure are shown in 
Figure 5 compared with the analytical solution. The analytical and computed results are in 
close agreement. This example shows that the formulation referred to as analysis I1 is 
suitable for the computation where the pressure is given as the boundary condition. 

The third example is the computation of the flow through a channel with a sudden 
expansion using the formulation in analysis I. The computed pressures have been compared 
with those obtained by Lee et d9 The finite element idealization and the boundary 
conditions are shown in Figure 6. At the side walls of the channel, both components of the 
velocity are assumed to be zero. At the entrance of the channel A-E, the parabolic velocity 
profile is enforced. At the boundary D-F, the surface force is assumed to be zero. A sound 
speed C = 1000 is used. The Reynolds number of the flow is Re = 60, where it is computed 
by the maximum entrance velocity and entrance length. The computed pressure, compared 
with the result obtained by Lee et d9 is illustrated in Figure 6. Lee et aE. have computed the 
pressure by the steady flow analysis based on the penalty function formulation. Both results 
are in close agreement. It can be concluded from the above three examples that the present 
finite element method is particularly suitable for the analysis of the incompressible viscous 
fluid flow. 

8. VORTEX SHEDDING ANALYSIS 

The finite element method presented in this paper has been applied to the problem of vortex 
shedding behind a circular cylinder. The finite element idealization and boundary conditions 
employed in the analysis are shown in Figure 7. The total numbers of nodal point and finite 
element are 2428 and 4718, respectively. On the boundaries A-D and B-C, normal 
velocities to the boundary and the tangential surface force are assumed zero. On the 
boundary D-C, both components of the surface force are specified to be zero. A uniform 
velocity profile with maximum value U, is enforced on boundary A-B. Both components of 
velocity on the cylinder surface E are taken to be zero. In this analysis, the formulations in 
analysis I are used. Referring to air fiow, sound speed and density are assumed to be 
C = 337 m/s and p = 0.1319 kg/m3. The volumetric viscosity K is assumed always zero. 
Various values of the shear viscosity p are used for flows of the corresponding Reynolds 
number. As the initial conditions, all velocities and pressures are given to be zero. The 
Reynolds number is estimated using the entrance velocity and diameter of cylinder as: 

P Uod Re =- 
lu. 

Three cases of the flows at the Reynolds numbers of 1.5 x lo5, 1.5 x lo4 and 1.5 x 102 are 
computed. For the time increment, the estimation criteria lead to 

Ax 
Cfu, 

AT=-- - 5 x (73) 

For practical computations, AT = 7.5 x 
e =0-73 is used. 

is employed. A selective lumping parameter 
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T -4.500 

i 
Figure 8. 

In Figure 8, the computed velocity at a Reynolds numbers of 50 is presented. The 
computed results are symmetric. The computed velocities at Reynolds numbers of 1.5 X lo2, 
1.5 x lo4 and 1.5 x los are shown in Figures 9, 10 and 11. It is clearly illustrated in those 
Figures that the vortex shedding behind the cylinder can be computed exactly. It is a well 
known fact that the ratio alb is always constant and independent of the Reynolds number, 
where a and b are the vertical and horizontal distances between vorticities, respectively. 
From the numerical results shown in the Figures, the convective velocity of vortex 0 is 
obtained. Using these, the Strouhal number is derived as: 

Using the computed velocities, the ratio a/b and the Strouhal number S have been obtained 
and summarized in Table I. 

Table I 

Re a/b  S l /S 

1*Sx102 0.280 4.86 0.206 
l.Sx104 0.281 5.14 0.195 
1.5X1O5 0.282 5.42 0.185 

The ratio 0.280 is commonly used (e.g. Reference 24). The Strouhal number is plotted in 
Figure 12  with the well known experimental data.24 The Strouhal number computed by the 
results by the present method is in close agreement with the experimental value. From the 
above investigations, it can be stated that the numerical method presented in this paper is 
useful for the analysis of the phenomena, such as vortex shedding behind cylinder. 

Figure 13 represents velocity changing versus time at ponts a, b and c of the flow at a 
Reynolds number of 1.5 x 10'. The locations of the points are shown in Figure 7. In Figure 
13, the appearance of both vertical and horizontal velocities indicates that the vertical 
component is more energetic close to the cylinder. Especially, the vertical component seems 
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Figure 9. 
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Figure 10. 



Figure 11  
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Re =1.5x102 l/S=4.86 b/a=0.280 

Re=1.5x10L l/S=5.14 bla=0.281 

Re = 1 . 9  lo5 1IS =5.42 b/a=0.282 

present method 

~2 experimental data 

‘I 10 102 td 104 105 106 
Re 

Stroughal number s 
Figure 12. 

17 

zero at the boundary D-C. The period of velocity variation is given by T =  1-8. This seems 
due to the vortex. 

The computed pressure at time T = 5.775 through T = 6.000 is illustrated in Figure 14. 
The Reynolds number is 1 . 5 ~ 1 0 ~ .  The pressure variation according to production and 
separation of vortex can be clearly seen. Figure 15 represents pressure variation versus time 
at points d, e, f and g. The period of pressure variation is T =  1.8. This period exactly 
corresponds to that of velocity shown in Figure 13. 

The pressure coefficient defined by: 

is plotted in Figure 16 at a Reynolds number of 1-5 X lo5. The averaged value from T = 0 to 
T = 7-5 is used for p in equation (75). The solid line shows the well known experimental 
results (e.g. Ito, Miyata and Okauchi [1972]). In an average sense, the computed C, is in 
reasonable agreement with the experimental value. Particularly, the computed C, is close to 
the experimental value, whereas at the middle part, there is a slight discrepancy. This part is 
the transition domain, i.e. a substantial change in the flow can be obtained. Therefore, the 
finite element idealization should be fine as far as possible in this region. It is presumed that 
the finite element idealization should be much finer than the idealization used in this 
computation. The present computation has been carried out using HITAC M200H Compu- 
ter of University of Tokyo. The CPU time was about 3 hours for each total computation. 

9. CONCLUSION 

In this paper, a finite element method of unsteady two dimensional flow of incompressible 
viscous fluid at high Reynolds number has been presented. The leading characteristics are 
summarized as follows. 
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Figure 14. 
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30 60 90 120 150 180(8) 

Figure 16. 

(i) The basic formulation of the method is to employ slight compressibility. The equation 
of state has been transformed into the improved form of the equation of continuity 
using the speed of sound. Using this equation, an explicit scheme in time has been 
established. The equation corresponds to the physical interpretation of the penalty 
function method. 

(ii) For the numerical integration in time, the two step explicit scheme based on the linear 
triangular finite element has been employed. Using the explicit scheme, the require- 
ments for core storage and for computational time can be considerably reduced. 

(iii) The practical criterion for the selection of the time increment is expressed as: 

Ax 
A t 5 a -  u+c 

where a = 0.1 -0.3. 
(iv) A comparison of the numerical results obtained by the present method with the 

results computed by the analytical and the conventional numerical methods has been 
presented. The results are in close agreement. 

(v) The flow passed cylinder has been computed at Reynolds numbers of 1 . 5 ~  lo2, 
1.5 x lo4 and 1.5 x 10'. The vortex shedding has clearly been computed. The Strouhal 
number is comparable with the experimental data. 

(vi) The pressure coefficient computed by the present method has been compared with the 
coefficient obtained by experiments. There seems to be a considerable discrepancy, 
which is assumed to originate from the use of insufficient finite elements in the 
idealization. 

For the computation of the flow at relatively high Reynolds numbers, it is necessary to use 
refined finite element idealization and short time increment. In this sense, the explicit 
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numerical integration scheme is preferable when considering core storage and computational 
time. For the numerical integration in time, the selective lumping two step scheme based on 
linear triangular finite element is suitable from the point of numerical stability. A part of this 
research has been submitted to the proceedings of Japan Society of Civil Engineers.23 
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